245874 dsc02922 5e8ff7 original 1493825080

How 3D printing is creating newborn models with functioning organs to help doctors save lives

Neonatal manikins are being 3D printed for the first time with embedded sensors and functional organs to decrease infant mortality and provide a new standard of medical training for doctors and nurses. Eindhoven’s University of Technology is home to PhD candidate and Healthcare Flagship Program participant, Mark Thielen, who is on a mission to increase surgical and procedural success for neonatal patients. Using 3D printing and 3D Hubs, he’s creating the best possible training experience with lifelike newborns capable of intelligent sensor feedback with functional organs.

For surgeons and nurses, experiencing as close to the real thing as possible is incredibly important to the success of surgeries and medical procedures. Within the neonatal field, it’s incredibly difficult to practice correctly with the current state of practice mannequins which lack the complexity and feel of a newborn patient. Mark’s research is to develop manikins which have all their major internal organs functioning and equipped with sensors to monitor key measurements such as pressure, stress and impact during trial procedures (e.g CPR, intubation).

The reason 3D printing is being applied in this area is a combination of the vast materials available for testing and, most importantly, the organic shapes you can create with them. There are two key components to the mannequin: the ribcage/spine, which acts as the housing for the second component, the internal organs. Mark explains why he’s using 3D printing:

“Without 3D printing, this work would have been impossible. The sheer complexity of human anatomy is very hard to recreate realistically with any other production method, not to mention the cost and time differences.”

245875 dsc02745 cb89ef large 1493825465

After testing various thermoplastic elastomers on his internal desktop FDM 3D printer to initially create the larger parts such as the rib cage, he arrived at 3D Hubs. As a distributed network of 3D printing services, 3D Hubs gave Mark to access a wider array of materials at services near to him. He ordered the rib cage and full internal structure in thermoplastic rubber again but used Selective Laser Sintering (SLS) thanks to accuracy and dimensional freedom of the technology:

“3D printing helped this research by enabling the synthesis of models for testing in a swift and detailed manner. As this research focusses on the physical realm, it is important that we work with physical models rather than just virtual ones. 3D Hubs allowed me to create the larger components locally and in a material otherwise not available to me.”

To create the functional organs PolyJet 3D printing was used to create molds instead of traditional methods because of the inability to rapidly change the molds if needed and also the shapes needed. Material Jetting allowed Mark to combine materials (rigid and flexible plastics) when creating the molds. For example he created a heart that needed to have highly detailed working valves. Mark explains:

“Due to the extremely small sizes of neonatal organs, as well as their minuscule detail, the only way to create a mold for these parts was to 3D print them.”

When the ribcage and organs are combined, Mark runs a fluid through the mannequin with two cameras and sensors installed, giving feedback on it’s on every part of the mannequin throughout various trial procedures.

245878 dsc02864%20(1) 664d29 original 1493825580

Mark’s research into the creation of hyper realistic mannequins doesn’t stop at neonatal patients though, with there being potentially wider applications. He goes on to explain:

“I believe that developing and advancing what we started here can aid medical research in a broader scope. We could potentially create realistic patient models of other body parts to strengthen medical training for emergency procedures and pregnancies.”

3D printing is often talked about as a revolutionary technology, but without substance to the claim, here we can see it in its truest form: providing a solution that no other method could.

245879 dsc02720%20(2) ad99d3 original 1493825727

Mark’s workflow looks like this:

  1. MRI scan received of neonatal patient
  2. Mimic software used to segment specific organs and reconstruct into a 3D printable format (STL file)
  3. Import specific organ into Solidworks for mechanical reconstruction (“just printing an organ does not make it functional”)
  4. Magics software is then used to ensure a smooth print, optimizing the design for the 3D printing technology to be used.
  5. The files are then exported and ready to be printed
About 3D Hubs

3D Hubs is the fastest 3D print solution for product designers and engineers that do prototyping and short production runs. With service providers connected in over 160 countries, 3D Hubs is the world’s largest network of 3D printing services. 3D Hubs was founded in April 2013 in Amsterdam.